中国科学院大连化学物理研究所机构知识库
Advanced  
DICP OpenIR  > 中国科学院大连化学物理研究所  > 会议论文
学科主题: 物理化学
题名: An in silico model for prediction of the resistance index about taxoids
作者: Dong PP(董佩佩) ;  Zhang YY(张延延) ;  Ge GB(葛广波) ;  Li YH(李艳红) ;  Yang L(杨凌)
会议名称: 第三届中日双边药理学和临床药理学会议
会议日期: 2007-8-23
出版日期: 2007-08-23
会议地点: 中国
通讯作者: 杨凌
部门归属: 十八室
主办者: 中国药理学会
摘要: AIM Multi drug resistance (MDR) is among the most serious clinical problems of paclitaxel and docetaxel. In this article we have constructed a QSAR model with 63 taxoids to predict the key parameter of MDR: resistance index (RI). METHODS Electrotopological state (E-state) indices were calculated to characterize molecular structure, together with a principle component analysis to reduce the variable space, and then back propagation neural network (BPNN) technique was used to build the model. RESULTS The final model was proved to be good with the cross validation Q2 0.62, external testing R2 0.84 and the slope of the regression line through the origin is 0.86. CONCLUSION Our QSAR model can predict the RI to a relative nicety, which will aid in the development of new anti-MDR taxoids. Keywords: taxoids; MDR; RI; E-state; PCA; BPNN
语种: 中文
内容类型: 会议论文
URI标识: http://cas-ir.dicp.ac.cn/handle/321008/112714
Appears in Collections:中国科学院大连化学物理研究所_会议论文

Files in This Item:

There are no files associated with this item.


Recommended Citation:
Dong PP,Zhang YY,Ge GB,et al. An in silico model for prediction of the resistance index about taxoids[C]. 见:第三届中日双边药理学和临床药理学会议. 中国. 2007-8-23.
Service
 Recommend this item
 Sava as my favorate item
 Show this item's statistics
 Export Endnote File
Google Scholar
 Similar articles in Google Scholar
 [董佩佩]'s Articles
 [张延延]'s Articles
 [葛广波]'s Articles
CSDL cross search
 Similar articles in CSDL Cross Search
 [董佩佩]‘s Articles
 [张延延]‘s Articles
 [葛广波]‘s Articles
Related Copyright Policies
Null
Social Bookmarking
  Add to CiteULike  Add to Connotea  Add to Del.icio.us  Add to Digg  Add to Reddit 
所有评论 (0)
暂无评论
 
评注功能仅针对注册用户开放,请您登录
您对该条目有什么异议,请填写以下表单,管理员会尽快联系您。
内 容:
Email:  *
单位:
验证码:   刷新
您在IR的使用过程中有什么好的想法或者建议可以反馈给我们。
标 题:
 *
内 容:
Email:  *
验证码:   刷新

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.

 

 

Valid XHTML 1.0!
Powered by CSpace