DICP OpenIR
Subject Area物理化学
A method for handling metabonomics data from liquid chromatographymass spectrometry: combinational use of support vector machine recursive feature elimination, genetic algorithm and random forest for feature selection
Lin XH(林晓惠); WangQuancai; Yin PY(尹沛源); TangLiang; TanYexiong; LiHong; YanKang; Xu GW(许国旺)
Source PublicationMetabolomics
2011
Volume7Issue:4Pages:549
Indexed By待补充
Department18
Funding Project1808
Contribution Rank2,3
Language
Document Type期刊论文
Identifierhttp://cas-ir.dicp.ac.cn/handle/321008/118524
Collection中国科学院大连化学物理研究所
Corresponding AuthorLin XH(林晓惠)
Recommended Citation
GB/T 7714
Lin XH,WangQuancai,Yin PY,et al. A method for handling metabonomics data from liquid chromatographymass spectrometry: combinational use of support vector machine recursive feature elimination, genetic algorithm and random forest for feature selection[J]. Metabolomics,2011,7(4):549.
APA 林晓惠.,WangQuancai.,尹沛源.,TangLiang.,TanYexiong.,...&许国旺.(2011).A method for handling metabonomics data from liquid chromatographymass spectrometry: combinational use of support vector machine recursive feature elimination, genetic algorithm and random forest for feature selection.Metabolomics,7(4),549.
MLA 林晓惠,et al."A method for handling metabonomics data from liquid chromatographymass spectrometry: combinational use of support vector machine recursive feature elimination, genetic algorithm and random forest for feature selection".Metabolomics 7.4(2011):549.
Files in This Item:
File Name/Size DocType Version Access License
2011KX7wjZjow6.PDF(1916KB) 开放获取--Application Full Text
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[林晓惠]'s Articles
[WangQuancai]'s Articles
[尹沛源]'s Articles
Baidu academic
Similar articles in Baidu academic
[林晓惠]'s Articles
[WangQuancai]'s Articles
[尹沛源]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[林晓惠]'s Articles
[WangQuancai]'s Articles
[尹沛源]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.