DICP OpenIR
Glycine-Zn+/Zn2+ and their hydrates: On the number of water molecules necessary to stabilize the switterionic glycine-Zn+/Zn2+ over the nonzwitterionic ones
Ai, HQ; Bu, YX; Han, KL
刊名JOURNAL OF CHEMICAL PHYSICS
2003-06-22
DOI10.1063/1.1575192
118期:24页:10973-10985
收录类别SCI
文章类型Article
WOS标题词Science & Technology ; Physical Sciences
类目[WOS]Physics, Atomic, Molecular & Chemical
研究领域[WOS]Physics
关键词[WOS]COLLISION-INDUCED DISSOCIATION ; GAS-PHASE ; AMINO-ACIDS ; ZINC(II) COMPLEXES ; METAL-ION ; GLYCINE ; ENERGIES ; CATION ; FRAGMENTATIONS ; COORDINATION
英文摘要Several interaction modes of glycine with one Zn+ or Zn2+ and further with one and even two H2O molecules in the gas phase are studied at the hybrid three-parameter B3LYP and Hartree-Fock level, respectively. On the basis of these optimized geometries, single point calculations are performed using different theoretical methods and larger basis sets. The calculated results imply that the most stable glycine-Zn+ isomer is a five-membered ring with Zn+ bound to both amino nitrogen and carbonyl oxygen (NO) of glycine, and the next most stable glycine-Zn+ species is a four-membered ring with Zn+ coordinated at both oxygen ends (OO) of the zwitterionic glycine. The binding energy of the most stable glycine-Zn+ is 68.5 kcal/mol calibrated at the BHLYP/6-311+G*//6-311+G* level. On the contrary with glycine-Zn+ isomers, the most stable glycine-Zn2+ species holds the similar coordination mode to that of next most stable glycine-Zn2+ complex, while the next most stable glycine-Zn2+ exhibits the similar coordination mode to that of the most stable glycine-Zn+. The binding strength of these glycine-Zn2+ isomers are all far more than those of their corresponding counterparts of glycine-Zn+ isomers, such as the binding energy of the most stable glycine-Zn2+ being 234.4 kcal/mol, showing stronger electrostatic interaction. The reoptimization for the two most stable modes with the different valent states (+1,+2) to combine a H2O molecule at their each end of Zn ion show that the relative energy ordering does not change, and also resembles their no-H2O-combined counterparts. However, an interesting and important observation has been first obtained that single hydration effect can strikingly strengthen the stability of the monovalent OO form though it is still higher by 0.1 kcal/mol in energy than the NO counterpart. Hydration effect of double waters can reverse their relative stability due to the strong hydrogen bond effect in the OO form. Different from the case of the two monovalent hydrated complexes, calculated results for the divalent zinc ion chelated complexes show that with or without single hydration hardly change the value of their relative energy, and hydration strength and glycine deformation difference induced with or without hydration in the two different modes display surprising similarity. So we predict that the further hydration basically do not yield any effect on the relative stability. The prediction for the hydration effect on the glycine-Zn+/Zn2+ system would be also suitable for its analogs, such as glycine-Cu+/Cu2+ and glycine-Ni+/Ni2+ systems, and even suitable for other similar transition metal ion-chelated glycine systems. (C) 2003 American Institute of Physics.
语种英语
WOS记录号WOS:000183402200018
引用统计
被引频次:56[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://cas-ir.dicp.ac.cn/handle/321008/138301
专题中国科学院大连化学物理研究所
作者单位1.Shandong Univ, Inst Theoret Chem, Jinan 250100, Peoples R China
2.Qufu Normal Univ, Dept Chem, Qufu 273165, Peoples R China
3.Chinese Acad Sci, Dalian Inst Chem Phys, State Key Lab Mol React Dynam, Dalian 116023, Peoples R China
4.Sandong Univ, Inst Theoret Chem, Jinan 250100, Peoples R China
推荐引用方式
GB/T 7714
Ai, HQ,Bu, YX,Han, KL. Glycine-Zn+/Zn2+ and their hydrates: On the number of water molecules necessary to stabilize the switterionic glycine-Zn+/Zn2+ over the nonzwitterionic ones[J]. JOURNAL OF CHEMICAL PHYSICS,2003,118(24):10973-10985.
APA Ai, HQ,Bu, YX,&Han, KL.(2003).Glycine-Zn+/Zn2+ and their hydrates: On the number of water molecules necessary to stabilize the switterionic glycine-Zn+/Zn2+ over the nonzwitterionic ones.JOURNAL OF CHEMICAL PHYSICS,118(24),10973-10985.
MLA Ai, HQ,et al."Glycine-Zn+/Zn2+ and their hydrates: On the number of water molecules necessary to stabilize the switterionic glycine-Zn+/Zn2+ over the nonzwitterionic ones".JOURNAL OF CHEMICAL PHYSICS 118.24(2003):10973-10985.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Ai, HQ]的文章
[Bu, YX]的文章
[Han, KL]的文章
百度学术
百度学术中相似的文章
[Ai, HQ]的文章
[Bu, YX]的文章
[Han, KL]的文章
必应学术
必应学术中相似的文章
[Ai, HQ]的文章
[Bu, YX]的文章
[Han, KL]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。