DICP OpenIR
Comparison between two PCR-based bacterial identification methods through artificial neural network data analysis
Wen, Jie2; Zhang, Xiaohui2; Gao, Peng1; Jiang, Qiuhong2
关键词16s Rrna Gene 16s-23s Rrna Spacer Region Gene Capillary Electrophoresis Artificial Neural Network (Ann) Single-strand Conformation Polymorphism (Sscp) Restriction Fragment Length Polymorphism (Rflp)
刊名JOURNAL OF CLINICAL LABORATORY ANALYSIS
2008
DOI10.1002/jcla.20224
22期:1页:14-20
收录类别SCI
文章类型Article
WOS标题词Science & Technology ; Life Sciences & Biomedicine
类目[WOS]Medical Laboratory Technology
研究领域[WOS]Medical Laboratory Technology
关键词[WOS]16S RIBOSOMAL-RNA ; STRAND CONFORMATION POLYMORPHISM ; RAPID IDENTIFICATION ; SEQUENCE-ANALYSIS ; ELECTROPHORESIS ; GENE ; POLYACRYLAMIDE ; MICROARRAY ; PATHOGENS ; REGION
英文摘要The 16S ribosomal ribonucleic acid (rRNA) and 16S-23S rRNA spacer region genes are commonly used as taxonomic and phylogenetic tools. In this study, two pairs of fluorescent-labeled primers for 16S rRNA genes and one pair of primers for 16S-23S rRNA spacer region genes were selected to amplify target sequences of 317 isolates from positive blood cultures. The polymerase chain reaction (PCR) products of both were then subjected to restriction fragment length polymorphism (RFLP) analysis by capillary electrophoresis after incomplete digestion by Hae III. For products of 16S rRNA genes, single-strand conformation polymorphism (SSCP) analysis was also performed directly. When the data were processed by artificial neural network (ANN), the accuracy of prediction based on 16S-23S rRNA spacer region gene RFLP data was much higher than that of prediction based on 16S rRNA gene SSCP analysis data(98.0% vs. 79.6%). This study proved that the utilization of ANN as a pattern recognition method was a valuable strategy to simplify bacterial identification when relatively complex data were encountered.
语种英语
WOS记录号WOS:000253587800003
引用统计
文献类型期刊论文
条目标识符http://cas-ir.dicp.ac.cn/handle/321008/140790
专题中国科学院大连化学物理研究所
作者单位1.Chinese Acad Sci, Dalian Inst Chem Phys, Natl Chromatog R&A Ctr, Dalian 116023, Peoples R China
2.Dalian Municipal Cent Hosp, Dalian, Peoples R China
推荐引用方式
GB/T 7714
Wen, Jie,Zhang, Xiaohui,Gao, Peng,et al. Comparison between two PCR-based bacterial identification methods through artificial neural network data analysis[J]. JOURNAL OF CLINICAL LABORATORY ANALYSIS,2008,22(1):14-20.
APA Wen, Jie,Zhang, Xiaohui,Gao, Peng,&Jiang, Qiuhong.(2008).Comparison between two PCR-based bacterial identification methods through artificial neural network data analysis.JOURNAL OF CLINICAL LABORATORY ANALYSIS,22(1),14-20.
MLA Wen, Jie,et al."Comparison between two PCR-based bacterial identification methods through artificial neural network data analysis".JOURNAL OF CLINICAL LABORATORY ANALYSIS 22.1(2008):14-20.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wen, Jie]的文章
[Zhang, Xiaohui]的文章
[Gao, Peng]的文章
百度学术
百度学术中相似的文章
[Wen, Jie]的文章
[Zhang, Xiaohui]的文章
[Gao, Peng]的文章
必应学术
必应学术中相似的文章
[Wen, Jie]的文章
[Zhang, Xiaohui]的文章
[Gao, Peng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。