DICP OpenIR
Retention Time Prediction Improves Identification in Nontargeted Lipidomics Approaches
Aicheler, Fabian1,2; Li, Jia3; Hoene, Miriam4; Lehmann, Rainer4,5,6; Xu, Guowang3; Kohlbacher, Oliver1,2,5,6
刊名ANALYTICAL CHEMISTRY
2015-08-04
DOI10.1021/acs.analchem.5b01139
87期:15页:7698-7704
收录类别SCI
文章类型Article
WOS标题词Science & Technology ; Physical Sciences
类目[WOS]Chemistry, Analytical
研究领域[WOS]Chemistry
关键词[WOS]SUPPORT VECTOR REGRESSION ; 2-DIMENSIONAL GAS-CHROMATOGRAPHY ; FLIGHT MASS-SPECTROMETRY ; BIOLOGICAL SAMPLES ; PLASMA LIPIDOMICS ; FATTY-ACIDS ; GC-MS ; DATABASE ; PROTEOMICS ; SYSTEM
英文摘要Identification of lipids in nontargeted lipidomics based on liquid-chromatography coupled to mass spectrometry (LC-MS) is still a major issue. While both accurate mass and fragment spectra contain valuable information, retention time (t(R)) information can be used to augment this data. We present a retention time model based on machine learning approaches which enables an improved assignment of lipid structures and automated annotation of lipidomics data. In contrast to common approaches we used a complex mixture of 201 lipids originating from fat tissue instead of a standard mixture to train a support vector regression (SVR) model including molecular structural features. The cross-validated model achieves a correlation coefficient between predicted and experimental test sample retention times of r = 0.989. Combining our retention time model with identification via accurate mass search (AMS) of lipids against the comprehensive LIPID MAPS database, retention time filtering can significantly reduce the rate of false positives in complex data sets like adipose tissue extracts. In our case, filtering with retention time information removed more than half of the potential identifications, while retaining 95% of the correct identifications. Combination of high-precision retention time prediction and accurate mass can thus significantly narrow down the number of hypotheses to be assessed for lipid identification in complex lipid pattern like tissue profiles.
语种英语
WOS记录号WOS:000359277900031
引用统计
文献类型期刊论文
条目标识符http://cas-ir.dicp.ac.cn/handle/321008/146465
专题中国科学院大连化学物理研究所
作者单位1.Univ Tubingen, Quantitat Biol Ctr, Appl Bioinformat Ctr Bioinformat, D-72076 Tubingen, Baden Wurttembe, Germany
2.Univ Tubingen, Dept Comp Sci, D-72076 Tubingen, Baden Wurttembe, Germany
3.Chinese Acad Sci, Dalian Inst Chem Phys, Key Lab Separat Sci Analyt Chem, Dalian 116023, Liaoning, Peoples R China
4.Univ Tubingen Hosp, Dept Internal Med 4, Div Clin Chem & Pathobiochem, D-72076 Tubingen, Baden Wurttembe, Germany
5.Univ Tubingen, Helmholtz Ctr Munich, Inst Diabet Res & Metab Dis, Dept Mol Diabetol, D-72076 Tubingen, Baden Wurttembe, Germany
6.German Ctr Diabet Res DZD, D-72076 Tubingen, Baden Wurttembe, Germany
推荐引用方式
GB/T 7714
Aicheler, Fabian,Li, Jia,Hoene, Miriam,et al. Retention Time Prediction Improves Identification in Nontargeted Lipidomics Approaches[J]. ANALYTICAL CHEMISTRY,2015,87(15):7698-7704.
APA Aicheler, Fabian,Li, Jia,Hoene, Miriam,Lehmann, Rainer,Xu, Guowang,&Kohlbacher, Oliver.(2015).Retention Time Prediction Improves Identification in Nontargeted Lipidomics Approaches.ANALYTICAL CHEMISTRY,87(15),7698-7704.
MLA Aicheler, Fabian,et al."Retention Time Prediction Improves Identification in Nontargeted Lipidomics Approaches".ANALYTICAL CHEMISTRY 87.15(2015):7698-7704.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Aicheler, Fabian]的文章
[Li, Jia]的文章
[Hoene, Miriam]的文章
百度学术
百度学术中相似的文章
[Aicheler, Fabian]的文章
[Li, Jia]的文章
[Hoene, Miriam]的文章
必应学术
必应学术中相似的文章
[Aicheler, Fabian]的文章
[Li, Jia]的文章
[Hoene, Miriam]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。