中国科学院大连化学物理研究所机构知识库
Advanced  
DICP OpenIR  > 中国科学院大连化学物理研究所  > 期刊论文
题名: Retention Time Prediction Improves Identification in Nontargeted Lipidomics Approaches
作者: Aicheler, Fabian1, 2;  Li, Jia3;  Hoene, Miriam4;  Lehmann, Rainer4, 5, 6;  Xu, Guowang3;  Kohlbacher, Oliver1, 2, 5, 6
刊名: ANALYTICAL CHEMISTRY
发表日期: 2015-08-04
DOI: 10.1021/acs.analchem.5b01139
卷: 87, 期:15, 页:7698-7704
收录类别: SCI
文章类型: Article
WOS标题词: Science & Technology ;  Physical Sciences
类目[WOS]: Chemistry, Analytical
研究领域[WOS]: Chemistry
英文摘要: Identification of lipids in nontargeted lipidomics based on liquid-chromatography coupled to mass spectrometry (LC-MS) is still a major issue. While both accurate mass and fragment spectra contain valuable information, retention time (t(R)) information can be used to augment this data. We present a retention time model based on machine learning approaches which enables an improved assignment of lipid structures and automated annotation of lipidomics data. In contrast to common approaches we used a complex mixture of 201 lipids originating from fat tissue instead of a standard mixture to train a support vector regression (SVR) model including molecular structural features. The cross-validated model achieves a correlation coefficient between predicted and experimental test sample retention times of r = 0.989. Combining our retention time model with identification via accurate mass search (AMS) of lipids against the comprehensive LIPID MAPS database, retention time filtering can significantly reduce the rate of false positives in complex data sets like adipose tissue extracts. In our case, filtering with retention time information removed more than half of the potential identifications, while retaining 95% of the correct identifications. Combination of high-precision retention time prediction and accurate mass can thus significantly narrow down the number of hypotheses to be assessed for lipid identification in complex lipid pattern like tissue profiles.
关键词[WOS]: SUPPORT VECTOR REGRESSION ;  2-DIMENSIONAL GAS-CHROMATOGRAPHY ;  FLIGHT MASS-SPECTROMETRY ;  BIOLOGICAL SAMPLES ;  PLASMA LIPIDOMICS ;  FATTY-ACIDS ;  GC-MS ;  DATABASE ;  PROTEOMICS ;  SYSTEM
语种: 英语
WOS记录号: WOS:000359277900031
Citation statistics: 
内容类型: 期刊论文
URI标识: http://cas-ir.dicp.ac.cn/handle/321008/146465
Appears in Collections:中国科学院大连化学物理研究所_期刊论文

Files in This Item:

There are no files associated with this item.


作者单位: 1.Univ Tubingen, Quantitat Biol Ctr, Appl Bioinformat Ctr Bioinformat, D-72076 Tubingen, Baden Wurttembe, Germany
2.Univ Tubingen, Dept Comp Sci, D-72076 Tubingen, Baden Wurttembe, Germany
3.Chinese Acad Sci, Dalian Inst Chem Phys, Key Lab Separat Sci Analyt Chem, Dalian 116023, Liaoning, Peoples R China
4.Univ Tubingen Hosp, Dept Internal Med 4, Div Clin Chem & Pathobiochem, D-72076 Tubingen, Baden Wurttembe, Germany
5.Univ Tubingen, Helmholtz Ctr Munich, Inst Diabet Res & Metab Dis, Dept Mol Diabetol, D-72076 Tubingen, Baden Wurttembe, Germany
6.German Ctr Diabet Res DZD, D-72076 Tubingen, Baden Wurttembe, Germany

Recommended Citation:
Aicheler, Fabian,Li, Jia,Hoene, Miriam,et al. Retention Time Prediction Improves Identification in Nontargeted Lipidomics Approaches[J]. ANALYTICAL CHEMISTRY,2015,87(15):7698-7704.
Service
 Recommend this item
 Sava as my favorate item
 Show this item's statistics
 Export Endnote File
Google Scholar
 Similar articles in Google Scholar
 [Aicheler, Fabian]'s Articles
 [Li, Jia]'s Articles
 [Hoene, Miriam]'s Articles
CSDL cross search
 Similar articles in CSDL Cross Search
 [Aicheler, Fabian]‘s Articles
 [Li, Jia]‘s Articles
 [Hoene, Miriam]‘s Articles
Related Copyright Policies
Null
Social Bookmarking
  Add to CiteULike  Add to Connotea  Add to Del.icio.us  Add to Digg  Add to Reddit 
所有评论 (0)
暂无评论
 
评注功能仅针对注册用户开放,请您登录
您对该条目有什么异议,请填写以下表单,管理员会尽快联系您。
内 容:
Email:  *
单位:
验证码:   刷新
您在IR的使用过程中有什么好的想法或者建议可以反馈给我们。
标 题:
 *
内 容:
Email:  *
验证码:   刷新

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.

 

 

Valid XHTML 1.0!
Powered by CSpace