DICP OpenIR
A Computational Method of Defining Potential Biomarkers based on Differential Sub-Networks
Huang, Xin1; Lin, Xiaohui1; Zeng, Jun2; Wang, Lichao2; Yin, Peiyuan2; Zhou, Lina2; Hu, Chunxiu2; Yao, Weihong1
刊名SCIENTIFIC REPORTS
2017-10-30
DOI10.1038/s41598-017-14682-5
7
收录类别SCI
文章类型Article
WOS标题词Science & Technology
类目[WOS]Multidisciplinary Sciences
研究领域[WOS]Science & Technology - Other Topics
关键词[WOS]CARDIOVASCULAR-DISEASE ; METABOLOMICS DATA ; GENE-EXPRESSION ; CANCER ; CLASSIFICATION ; IDENTIFICATION ; CARCINOMA ; SELECTION ; MODULES ; MARKERS
英文摘要Analyzing omics data from a network-based perspective can facilitate biomarker discovery. To improve disease diagnosis and identify prospective information indicating the onset of complex disease, a computational method for identifying potential biomarkers based on differential sub-networks (PBDSN) is developed. In PB-DSN, Pearson correlation coefficient (PCC) is used to measure the relationship between feature ratios and to infer potential networks. A differential sub-network is extracted to identify crucial information for discriminating different groups and indicating the emergence of complex diseases. Subsequently, PB-DSN defines potential biomarkers based on the topological analysis of these differential sub-networks. In this study, PB-DSN is applied to handle a static genomics dataset of small, round blue cell tumors and a time-series metabolomics dataset of hepatocellular carcinoma. PB-DSN is compared with support vector machine-recursive feature elimination, multivariate empirical Bayes statistics, analyzing time-series data based on dynamic networks, molecular networks based on PCC, PinnacleZ, graph-based iterative group analysis, KeyPathwayMiner and BioNet. The better performance of PB-DSN not only demonstrates its effectiveness for the identification of discriminative features that facilitate disease classification, but also shows its potential for the identification of warning signals.
语种英语
WOS记录号WOS:000414131700032
引用统计
文献类型期刊论文
条目标识符http://cas-ir.dicp.ac.cn/handle/321008/149719
专题中国科学院大连化学物理研究所
作者单位1.Dalian Univ Technol, Sch Comp Sci & Technol, Dalian 116024, Peoples R China
2.Chinese Acad Sci, Dalian Inst Chem Phys, Key Lab Separat Sci Analyt Chem, Dalian 116023, Peoples R China
推荐引用方式
GB/T 7714
Huang, Xin,Lin, Xiaohui,Zeng, Jun,et al. A Computational Method of Defining Potential Biomarkers based on Differential Sub-Networks[J]. SCIENTIFIC REPORTS,2017,7.
APA Huang, Xin.,Lin, Xiaohui.,Zeng, Jun.,Wang, Lichao.,Yin, Peiyuan.,...&Yao, Weihong.(2017).A Computational Method of Defining Potential Biomarkers based on Differential Sub-Networks.SCIENTIFIC REPORTS,7.
MLA Huang, Xin,et al."A Computational Method of Defining Potential Biomarkers based on Differential Sub-Networks".SCIENTIFIC REPORTS 7(2017).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Huang, Xin]的文章
[Lin, Xiaohui]的文章
[Zeng, Jun]的文章
百度学术
百度学术中相似的文章
[Huang, Xin]的文章
[Lin, Xiaohui]的文章
[Zeng, Jun]的文章
必应学术
必应学术中相似的文章
[Huang, Xin]的文章
[Lin, Xiaohui]的文章
[Zeng, Jun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。