DICP OpenIR
An alignment algorithm for LC-MS-based metabolomics dataset assisted by MS/MS information
Li, Lili1,3; Ren, Weijie2; Kong, Hongwei1; Zhao, Chunxia1; Zhao, Xinjie1; Lin, Xiaohui2; Lu, Xin1; Xu, Guowang1
关键词Liquid Chromatography-mass Spectrometry Metabolomics Peak Alignment Tandem Mass Spectrometry Metabolic Profiling
刊名ANALYTICA CHIMICA ACTA
2017-10-16
DOI10.1016/j.aca.2017.07.058
990页:96-102
收录类别SCI
文章类型Article
WOS标题词Science & Technology ; Physical Sciences
类目[WOS]Chemistry, Analytical
研究领域[WOS]Chemistry
关键词[WOS]CHROMATOGRAPHY-MASS SPECTROMETRY ; LIQUID-CHROMATOGRAPHY ; LARGE-SCALE ; FEATURE-EXTRACTION ; TOBACCO-LEAVES ; DISCOVERY ; IDENTIFICATION ; INTEGRATION ; PLATFORM ; REGIONS
英文摘要Liquid chromatography-mass spectrometry (LC-MS) is an important analytical platform for metabolomics study. Peak alignment of metabolomics dataset is one of the keys for a successful metabolomics study. In this work, a MS/MS-based peak alignment method for LC-MS metabolomics data was developed. A rigorous strategy for screening endogenous reference variables was proposed. Firstly, candidate endogenous reference variables were selected based on MS, MS/MS and retention time in all samples. Multiple robust endogenous reference variables were obtained through further evaluation and confirmation. Then retention time of each metabolite feature was corrected by local linear regression using the four nearest neighbor robust reference variables. Finally, peak alignment was carried out based on corrected retention time, MS and MS/MS. Comparing with the other two peak alignment methods, the developed method showed a good performance and was suitable for metabolomics data with larger retention time drift. Our approach provides a simple and robust alignment method which is reliable to align LC-MS metabolomics dataset. (c) 2017 Elsevier B.V. All rights reserved.
语种英语
WOS记录号WOS:000412671400007
引用统计
文献类型期刊论文
条目标识符http://cas-ir.dicp.ac.cn/handle/321008/150180
专题中国科学院大连化学物理研究所
作者单位1.Chinese Acad Sci, Dalian Inst Chem Phys, CAS Key Lab Separat Sci Analyt Chem, Dalian 116023, Peoples R China
2.Dalian Univ Technol, Sch Comp Sci & Technol, Dalian 116024, Peoples R China
3.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
推荐引用方式
GB/T 7714
Li, Lili,Ren, Weijie,Kong, Hongwei,et al. An alignment algorithm for LC-MS-based metabolomics dataset assisted by MS/MS information[J]. ANALYTICA CHIMICA ACTA,2017,990:96-102.
APA Li, Lili.,Ren, Weijie.,Kong, Hongwei.,Zhao, Chunxia.,Zhao, Xinjie.,...&Xu, Guowang.(2017).An alignment algorithm for LC-MS-based metabolomics dataset assisted by MS/MS information.ANALYTICA CHIMICA ACTA,990,96-102.
MLA Li, Lili,et al."An alignment algorithm for LC-MS-based metabolomics dataset assisted by MS/MS information".ANALYTICA CHIMICA ACTA 990(2017):96-102.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Lili]的文章
[Ren, Weijie]的文章
[Kong, Hongwei]的文章
百度学术
百度学术中相似的文章
[Li, Lili]的文章
[Ren, Weijie]的文章
[Kong, Hongwei]的文章
必应学术
必应学术中相似的文章
[Li, Lili]的文章
[Ren, Weijie]的文章
[Kong, Hongwei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。